首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82916篇
  免费   10149篇
  国内免费   4717篇
电工技术   12534篇
技术理论   13篇
综合类   6451篇
化学工业   10621篇
金属工艺   2942篇
机械仪表   3614篇
建筑科学   10553篇
矿业工程   2174篇
能源动力   12742篇
轻工业   4074篇
水利工程   1781篇
石油天然气   2544篇
武器工业   721篇
无线电   6330篇
一般工业技术   8826篇
冶金工业   3885篇
原子能技术   1381篇
自动化技术   6596篇
  2024年   235篇
  2023年   1754篇
  2022年   2773篇
  2021年   3181篇
  2020年   3463篇
  2019年   3226篇
  2018年   2713篇
  2017年   3239篇
  2016年   3593篇
  2015年   3556篇
  2014年   5699篇
  2013年   5545篇
  2012年   6141篇
  2011年   6770篇
  2010年   5210篇
  2009年   5312篇
  2008年   4776篇
  2007年   5286篇
  2006年   4304篇
  2005年   3330篇
  2004年   2753篇
  2003年   2408篇
  2002年   2176篇
  2001年   1867篇
  2000年   1499篇
  1999年   1187篇
  1998年   951篇
  1997年   742篇
  1996年   699篇
  1995年   556篇
  1994年   509篇
  1993年   391篇
  1992年   313篇
  1991年   278篇
  1990年   238篇
  1989年   196篇
  1988年   158篇
  1987年   105篇
  1986年   78篇
  1985年   119篇
  1984年   103篇
  1983年   67篇
  1982年   83篇
  1981年   39篇
  1980年   44篇
  1979年   27篇
  1978年   13篇
  1977年   13篇
  1959年   7篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
101.
Understanding energy transport in metal halide perovskites is essential to effectively guide further optimization of materials and device designs. However, difficulties to disentangle charge carrier diffusion, photon recycling, and photon transport have led to contradicting reports and uncertainty regarding which mechanism dominates. In this study, monocrystalline CsPbBr3 nanowires serve as 1D model systems to help unravel the respective contribution of energy transport processes in metal-halide perovskites. Spatially, temporally, and spectrally resolved photoluminescence (PL) microscopy reveals characteristic signatures of each transport mechanism from which a robust model describing the PL signal accounting for carrier diffusion, photon propagation, and photon recycling is developed. For the investigated CsPbBr3 nanowires, an ambipolar carrier mobility of μ = 35 cm2 V−1 s−1 is determined, and is found that charge carrier diffusion dominates the energy transport process over photon recycling. Moreover, the general applicability of the developed model is demonstrated on different perovskite compounds by applying it to data provided in previous related reports, from which clarity is gained as to why conflicting reports exist. These findings, therefore, serve as a useful tool to assist future studies aimed at characterizing energy transport mechanisms in semiconductor nanowires using PL.  相似文献   
102.
Thin and lightweight organic light-emitting diodes (OLEDs) are promising candidates for next-generation rollable displays; they offer numerous advantages, such as scalable manufacturing, high color contrast ratio, flexibility, and wide viewing angle. Despite the numerous merits of OLEDs, the insufficient lifetime and stability of blue OLEDs remain unresolved, thereby necessitating a feedback strategy for lifetime extension. Herein, we propose a simple yet effective methodology to determine the contact resistance (RCT) and characteristic trap energy (ET) of OLEDs simultaneously in the trapped-charge-limited-conduction regime, where electroluminescence occurs primarily. To validate our approach, the extracted RCT and ET values are directly compared with each other by connecting a commercial resistor (RC) to a blue OLED in series. The percent errors discovered in RC and ET are less than 7% and 4%, demonstrating the high feasibility and accuracy of our approach. We further employ this method to study the degradation mechanism of a blue OLED by presenting the electrical stress time- and cycle-dependent RCT, ET, ideality factor, and turn-on voltage, revealing different degradation patterns of the metal-to-transport layer interface and emission layer, respectively. Our results provide better insights into the electrical parameter extraction method and electrical current degradation mechanism in blue OLEDs.  相似文献   
103.
Relaxor ferroelectrics are attracting an increasing interest in the application of pulse power systems due to their excellent energy storage performance. In this paper, the (1-x)(Ba0·85Ca0.15)(Zr0·1Ti0.9)O3-xBi(Mg0·5Ti0.5)O3 ((1-x)BCZT-xBMT, x ≤ 0.2) relaxor ceramics are prepared by the solid state method. The influence of BMT on the microstructure, dielectric and energy storage properties of the prepared ceramics is investigated. The XRD results show that the peak intensity of impurities (Bi2O3, TiO2 and Ba2Bi4Ti5O18) is gradually stronger than that of BCZT phase with x increasing. Meanwhile, the grain size of (1-x)BCZT-xBMT ceramics gradually increases on account of the appearance of impurities Bi2O3. Influenced by the impurities and BMT, the dielectric constant of prepared ceramics gradually decreases with x increasing. A large Wrec value of 0.65 J/cm3 with an ultrahigh η value of 97.89% is achieved at x = 0.15 due to the high breakdown strength and slim P-E hysteresis loop. Meanwhile, the η is insensitive to the electric field. The ultrahigh η leads to lesser energy loss during the charge and discharge process. It makes the 0.85BCZT-0.15BMT ceramic more attractive in the application of pulse power systems.  相似文献   
104.
《Ceramics International》2021,47(22):31294-31301
The solid solution of Pb1-x Sm2x/3 (Zr0.6 Ti0.4) O3 ceramics with x = 0.1, 0.2, 0.3, and 0.4 was prepared via the high-energy ball milling technique. Further, the effect of excessive Sm2O3 substitution at Pb-site on structural, dielectric, and dc-conductivity properties was studied. The X-ray diffraction (XRD) analysis confirmed that all samples were crystallized with perovskite and pyrochlore diphase form. Excess Sm3+ substitution in the PZT system increases the pyrochlore volume fraction from 5 to 20% and induces a structural phase transition from rhombohedral to a tetragonal structure. The microstructural study by TEM and SEM indicated that the particles were spherical with an average size of 43–55 nm. The frequency and temperature-dependent dielectric constant for all compositions was carried out and it is obtained that the dielectric constant decreases with Sm3+ content. The phase transition temperature first decreases up to x = 0.2 and then increases for the higher concentration of samarium. The dc-conductivity studies revealed that all samples showed an unusual mixed TCR effect (both positive and negative temperature coefficient of resistance). Such properties of the studied samples indicate that the material is suitable for potential applications in thermistors, and temperature sensors of the automotive, and petroleum industries.  相似文献   
105.
凌庄子水厂蓄水池进水口处有一保水堰,为非标准薄壁堰,不能使用已有堰流公式对其过流量进行准确计算。为了得出较为精确的过流流量,按照重力相似准则制作几何比尺为1∶5的模型进行试验研究。在已有自由出流公式的基础上,对自由出流流量系数进行修正并对淹没情况下流量变化过程进行研究。对该非标准堰自由出流流量系数的实测值与经验值进行分析比较,发现堰板槽降低了实际自由出流过流能力。淹没出流的流量系数主要与下游尾水位有关,试验中形成的淹没式堰流受实际堰型尺寸影响,下游尾水位和堰上水位近似相等,不完全适用已有淹没出流流量公式,通过试验给出了修正淹没系数随h/p的变化关系。结果表明利用堰前、堰后水位初步计算过流流量是可行的,可为该工程提供参考,也可为实际工程中非标准矩形堰的流量计算提供思路。  相似文献   
106.
107.
Sensitizing conventional fluorescence (CF) dopants with thermally activated delayed fluorescence (TADF) materials has achieved considerable progress, by which the advantages of TADF materials and CF dopants can be fully harnessed. However, the usually used co-phase configuration of CF dopant-engaged sensitizing systems often encounters exciton loss due to Dexter energy transfer (DET). Herein, an effective out-of-phase configuration is proposed to sensitize CF dopants in the fabrication of white organic light-emitting diodes (WOLEDs). Based on a new efficient sky-blue TADF luminogen DCP-BP-DPAC which has an electroluminescence (EL) peak at 486 nm and an EL efficiency of 26.6%, a green TADF material BDMAC-XT, and a red CF dopant DBP sensitized by BDMAC-XT through an out-of-phase configuration without interlayer, efficient WOLEDs are successfully fabricated. By further adopting orange TBRB or 4CzTPNBu as intermediate sensitizers, more efficient energy transfer to DBP is achieved via Förster energy transfer. Through step-by-step energy transfer and elimination of excess DET process, high-performance all-fluorescent WOLEDs are achieved, providing excellent EL efficiencies over 23.0%, and highly stable white light with a high color rendering index of 87. The outstanding EL performance and high-quality emission color demonstrate the great potential of the proposed out-of-phase design for sensitizing systems of WOLEDs.  相似文献   
108.
乡村产业中的化石能源设备逐渐被电能技术替代,引起了乡村负荷波动增大、部分时段产生集中高负荷的问题。为了解决以上问题,将低品位清洁能源应用至乡村的茶叶生产中,针对烘茶全过程的工艺要求提出了跨临界CO2热泵烘茶技术;并以某茶叶生产乡村为对象,对其代表台区的全年日用电量及产茶日负荷进行了分析,得出采用CO2热泵烘茶后其负荷得到大幅度削减,整体可降低至原负荷的39.6%~46.8%,峰值负荷与平时负荷的比值由原本的13.6降至5.4~6.2。跨临界CO2热泵应用至农产品生产中可有效缓解乡村供电压力。  相似文献   
109.
Despite its shortcomings, fossil-based fuels are still utilized as the main energy source, accounting for about 80% of the world's total energy supply with about one-third of which comes from coal. However, conventional coal-fired power plants emit relatively higher amounts of greenhouse gases, and the derivatives of air pollutants, which necessitates the integration of environmentally benign technologies into the conventional power plants. In the current study, a H2–CO synthesis gas fueled solid oxide fuel cell (SOFC) is integrated to the coal-fired combined cycle along with a concentrated solar energy system for the purpose of promoting the cleaner energy applications in the fossil fuel-based power plants. The underlying motivation of the present study is to propose a novel design for a conventional coal-fired combined cycle without altering its main infrastructure to make its environmentally hazardous nature more ecofriendly. The proposed SOFC integrated coal-fired combined cycle is modeled thermodynamically for different types of coals, namely pet coke, Powder River Basin (PRB) coal, lignite and anthracite using the Engineering Equation Solver (EES) and the Ebsilon software packages. The current results show that the designed hybrid energy system provide higher performance with higher energy and exergy efficiencies ranging from 70.6% to 72.7% energetically and from 35.5% to 43.8% exergetically. In addition, carbon dioxide emissions are reduced varying between 18.31 kg/s and 30.09 kg/s depending on the selected coal type, under the assumption of 10 kg per second fuel inlet.  相似文献   
110.
The realization of dc-dc converters performs a vital function in exploiting renewable energy sources such as solar photovoltaic (PV) and fuel cell applications. This paper demonstrates a single-switch unidirectional buck-boost dc-dc converter for continuous power flow control, excluding the hybrid switched-capacitor. The proposed converter utilizes a limited number of passive components, only four diodes and three inductors required, in addition to six capacitors. The converter can operate at a wide input voltage range with continues input current. The converter has experimented under real-time conditions with 660 W PV system. The obtained efficiency ranges from 93% to 98%. Furthermore, the converter has interfaced with 550 W fuel cell operated under different fuel pressure. The realized efficiency ranges from 91% to 97%. The maximum measured inductance current ripple is limited to under 0.70 A in both scenarios, whereas 0.16 V is the maximum output voltage ripple.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号